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Abstract 
 

A linear programming problem (LP) deals with determining optimal allocations of 
limited resources to meet the given objectives. The objectives are usually maximizing profit, 
minimizing total cost, maximizing utility etc. In general, LP problems are solved by two 
methods. One is algebraic method (Simplex method) and the other one is graphical method. LP 
problems that involve only two variables can be solved by both methods. LP problems having 
three variables can also be solved graphically but is more difficult when tried out manually. 
Solving three-variable problems by simplex method is also tedious and time consuming. In the 
present work, a methodology for solving three variable LP problems using graphical method is 
developed. This method is automated using AutoCAD with Visual Basic Application (VBA). A 
mathematical approach for solving the problem is also developed. 

 
Introduction 
 
 Most of the real life problems have numerous constraints. But a majority of the 
constraints are weak constraints and they only have a minimal effect on the performance of the 
system. Hence, such constraints are normally neglected during modeling. In general, a large 
number of problems can be modelled into three variable problems involving only the 
predominant constraints. Even though the three-variable problems can be solved using simplex 
method, the calculations are cumbersome. In this paper the graphical method, which is normally 
used to solve the two-variable problem, is extended to solve three-variable problems. For 
optimizing the objective function, this methodology obtains the vertices of a 3D solid that is 
bounded by faces, which represent the constraints and non-negativity constraints. A 
mathematical implementation of this graphical method without using AutoCAD is also 
developed. Both procedures are explained in detail in the following sections.  
 
Graphical Method for three-variable problem 
 
 Given a three-variable problem to optimize, subject to some constraints and non-
negativity constraints, the methodology for solving the problem using graphical method is as 
follows. The constraint equations and non-negativity constraints are first represented as half-
spaces. Then a 3D solid that is obtained by considering these half-spaces as boundaries is 
obtained. The optimal solution lies in the vertices (corner points) of this 3D solid. The 
coordinates of the vertices are applied in the objective function and the optimal solution is 
determined. This can be explained clearly with an example.  
 
 



 
Consider a maximization problem  

 Z = x1+4x2+5x3  subject to constraints 
3x1+6x2+3x3 <= 24        (1)   
x1+2x2+3x3   <= 12        (2) 
3x1+2x2+x3   >=   6         (3) 
and x1,x2,x3   >=   0        (4) 

(a) (b) 
 

Fig 1. Typical Half-spaces depicting a surface dividing the 3D space into 
solid and void region  

 
 We know that a plane equation can be represented as ax1+bx2+cx3 = d. As the constraint 

equations are also of this type, the constraint equations can be thought of as planes. Since the 
constraints are of inequality type, they can be thought of as half-spaces. A half-space consists of 
a surface (usually of infinite extent), which completely divides the three dimensional space into a 
solid region and a void region as shown in Fig 1. Any point that satisfies the constraint equation 
lies in the solid region.  

Fig 2.  Representation of the 
constraint equation 1 as a plane 

Fig 3.Extrusion of the constraint plane towards 
origin to represent the plane as a half-space 

 
In order to represent a half-space, the points that lie on the plane (say intercepts) are first 

determined. By substituting the values of any two variables as zero, the x1, x2, x3 intercepts of the 
plane can be determined. For equation 1, by substituting x2 = 0 and x3 = 0, we get x1 = 8 (Fig 2). 



Similarly, when x1 = 0 and x3 = 0, we get x2 = 4 and when x1 = 0 and x2 = 0, we get x3= 8. Thus 
the three intercept-coordinates are obtained. They are (8,0,0), (0,4,0) and (0,0,8) for the plane 
represented by equation 1 as shown in Fig 2. Then, the plane is extruded along the solid side in 
order to represent it as a half-space. The solid side is determined as follows. On substituting 
(0,0,0) in the constraint equation, if the resultant satisfies the inequality, then the plane is 
extruded about the face normal that points towards the origin as shown in Fig 3. On substituting 
(0,0,0) in the equation 1, the LHS is 0, which is lesser than the RHS (i.e. 24). Hence for this 
constraint, the plane has to be extruded towards the origin about the face normal. If the resultant 
does not satisfy the inequality, extrusion has to be carried out in an opposite direction. 
Theoretically half-spaces have infinite solid region. Since generating an infinite half-space is not 
practical, the planes may be extruded only by a finite length K. The value of K is assumed as 
100. The user can also give any other value for K provided that the K value is sufficient to 
include the feasible solution space. The planes that divide the 3D space into solid and void 
region has to be an infinite plane. Instead, a finite plane with the intercepts as the vertices are 
first generated. Then these planes are scaled about the centre point of the plane. Scaling has to be 
done only for constraints having non-zero coefficients for all the three variables.  

 
In order to find out the face normal, the centre of the plane (Xc, Yc, Zc) are determined 

first. The centre coordinates can be obtained by  
 

3
aXc = ; 

3
bYc = ; 

3
cZc =  

 
here a, b, c are the x1, x2, x3 intercepts of the plane as shown in Fig 4. 

he coordinates of a point (Xn, Yn, Zn) lying at a distance of K in the face normal is determined 
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where L, M, N are given by 
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The value of K depends on two factors. They are the octant in which the plane is lying 

and whether the extrusion has to be carried out towards the origin or away from the origin. The 
values of K for planes lying in different octants with different direction of extrusion are given in 
Table 1. 

Table 1.   K values for different octants 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

The non-negativity constraints (i.e. x1, x2, x3 >= 0) are also represented as three half-
spaces. To represent x1 >= 0, x2x3 plane is extruded along the +ve x1 axis as shown in Fig 5. 
Similarly to represent x2 >= 0 and x3 >= 0, x1x3 and x1x2 planes are extruded along +ve x2 and 
+ve x3 axes respectively. Thus, all the constraints and non-negativity constraints are represented 
as half-spaces as explained earlier. The half-space representation of all the constraints and the 
non-negativity constraints for the example problem is shown in Fig 6. After representing all the 
constraints as half-spaces, the solid obtained by the intersection of all these half-spaces is 
extracted. For the example problem shown above, on intersection of all the half-spaces, a solid as 

Value of K 
Octant Axes Towards 

Origin 
Away from the 

Origin 

I +X1, +X2, +X3 -100 100 

II - X1, +X2,+X3 100 -100 

III -X1, –X2 , +X3 -100 100 

IV +X1, –X2, +X3 100 -100 

V +X1, -X2, -X3 -100 100 

VI +X1, +X2, -X3 100 -100 

VII -X1, +X2, -X3 -100 100 

VIII -X1, -X2, -X3 100 -100 

Fig 4.  Centre point of a plane 
Fig 5. Representation of x1 >= 0 as 

a half-space 



shown in Fig 7 is obtained. This solid represents the feasible solution space i.e. the point that lies 
on/within this solid is a feasible solution. All the vertices (corner points) of the solid are 
substituted in the objective function and the optimum value among these feasible solutions is 
determined. The vertices and the corresponding objective function values are shown in Table 2. 
The optimum value of the objective function is 22 and the corresponding variable values are 
(0,3,2). 

Fig 6.  (a) Plane representation of the constraints 
(b) Half-space representation of the constraints 

 
 

Table 2. Feasible solution set and the 

respective objective function values. 

S.No. Vertices Coordinates 
Objective 
Function 
value (Z) 

1. V1 (2,0,0) 2 
2. V2 (8,0,0) 8 
3. V3 (0,4,0) 16 
4. V4 (0,3,0) 12 
5. V5 (0,3,2) 22 
6. V6 (0,1.5,3) 21 
7. V7 (7.5,0,3.75) 19.5 
8. V8 (6,0,2) 16 

 
 
 
For LP problems with constraints having one coefficient as zero, (i.e. say x1 + 0x2 + 3x3 

<= 12) the plane is defined by (12,0,0), (0,0,0) and (0,0,4) and extruded towards +ve x2 as shown 
in Fig 8. For constraints having any two coefficients as zero (say x2 <= 6), the constraint is 
represented by a plane parallel to x1x3 plane intercepting x2 axis at 6 as shown in Fig 9.  For 
equality constraint, the plane is not extruded.  

Fig 7.  Solid obtained on intersection of all 
 the constraints [feasible solution space] 

 



Fig 8  Half-space representation for 
constraints having x2 coefficient as zero

Fig 9  Half-space representation for 
constraints having x1 and x3coefficient as zero 

 
AutoCAD implementation of the graphical method 
 

The graphical method is automated using VBA. VBA is an application development 
language that comes as a pack with AutoCAD by which the AutoCAD objects can be directly 
manipulated. AutoCAD VBA permits the VBA environment to run simultaneously with 
AutoCAD and provides programmatic control of AutoCAD through ActiveX automation 
interface. 

 
The application is made as an icon in the AutoCAD screen. On clicking the icon, an input 

dialog box appears. The objective function and the constraints have to be typed in and on 
clicking the OK button the optimal function value along with the optimal variable values are 
displayed in a dialog box. On getting the inputs, the application calculates the intercepts of each 
constraint and generates a 3D face in the AutoCAD screen and extrudes it in the direction 
deduced as explained earlier. Then it generates the intersection solid and extracts the vertices of 
the solid. From the coordinates of these vertices, the application calculates the optimal solution 
and displays it on the screen.  
 
Mathematical Implementation of the graphical method 
 
 The graphical method explained in the previous section was implemented in AutoCAD 
with VBA. The same procedure can also be implemented mathematically without the use of any 
3D modeling software. In mathematical method, instead of extruding the planes to get a bounded 
solid, the point of intersection of different planes are found out first. Using the coordinates of 
these points, the objective function is evaluated and the optimum solution among these solutions 
is found out. The x1, x2, x3 intercepts of the each plane are found out first. Finding out the 
intercept coordinates has already been explained in the previous section. Then, the point of 
intersection of consecutive constraint planes with x1x2, x2x3, x1x3 planes is determined.  

 
Finally the point of intersection between all the constraint planes (other than the non-

negativity constraints) is determined. Given three planes represented by 
 
a1x1 + b1x2 + c1x3 = d1;  a2x1 + b2x2 + c2x3 = d2;  a3x1 + b3x2 + c3x3 = d3; 

 



The point of intersection (x1, x2, x3) between any three planes can be determined by  
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For the example problem given in the earlier section, the constraint equations 1, 2 and 3 
are shown as planes P1, P2 and P3 in solid line, hidden line and dotted lines respectively in Fig 
10. The non-negativity constraints x1, x2, x3 >= 0 are shown as planes P4, P5 and P6. The 
intersection points of different planes are shown as Vijk, where Vijk is the point obtained by the 
intersection of planes Pi, Pj, Pk. We can see from these figures that all the intersection points 
obtained do not lie on the solution space solid (say V156, V246 V245, etc.,). Hence such points have 
to be removed from the solution set as these points do not satisfy some of the constraint 
equations. These points are identified by checking whether any point does not satisfy any of the 
constraint equations. For example, the coordinates of the point V156 are (0,0,8). The coordinates 
of V156 does not satisfy the constraint equation 3 (i.e. the LHS becomes greater than the RHS). 
Hence, this point is removed from the solution set. Then the points having negative coordinate 
values are also neglected, as such points do not satisfy the non-negativity constraints. After 
removing the unwanted points, the remaining points form a solution space among which the 
optimum solution is available. The solution space solid and the bounding vertices (V145, V345, 
V346, V146, V126, V236, V235, V125) are shown in Fig 11. In this method also, the same optimum 
solution as that in the graphical method is obtained. The procedure explained above is 
implemented without the use of AutoCAD model space. 



P5 

P3 
P6 

P4 
P1 

P2 

Fig 11. Solution space solid  
and the bounding vertices 

Fig 10.  Plane representation of the 
constraints  

 
Results and Conclusion 
 

The above-proposed methods suit the variants of LP problems like alternate optima, 
infeasible solution, degeneracy and unbounded solution spaces with bounded solution. For 
infeasible solution LP problems, a bounded solid is not obtained in the case of graphical method, 
as all the half-spaces do not intersect to form a solid. In the case of mathematical method, even 
though some intersection points are obtained, no point satisfies all the constraint equations. In 
such case, it is concluded that there is no feasible solution. For degeneracy problems, cycling 
does not occur as in the case of simplex method. Instead, a solution is directly obtained as the 
redundant constraints that lead to degeneracy are automatically eliminated while getting an 
intersection solid. In mathematical method also, the points belonging to redundant constraints get 
automatically deleted as those points do not satisfy all the constraint equations.  To find out 
whether a given LP problem has any other alternate optimal solutions, the values of the objective 
function obtained by substituting the co-ordinates of the bounded solid vertices are compared 
with one another. If the same objective function value is obtained for more than one vertex, then 
the problem has got alternate optima. The same procedure is followed in both the methods.  For 
bounded solutions in unbounded solution space, both the method gives results. But for 
unbounded solutions in unbounded solution space, both methods do not suit. 

The developed application software is tested with various LP problems. The results 
obtained are validated by comparing the results obtained from TORA and the results are found to 
be consistent. TORA is a software that solves LP problems by simplex method. The proposed 
methods effectively give the optimal solutions for all the LP problems. 
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